Macro kinetic studies for photocatalytic degradation of benzoic acid in immobilized systems.

نویسندگان

  • Kanheya Mehrotra
  • Gregory S Yablonsky
  • Ajay K Ray
چکیده

Semiconductor photocatalytic process has been studied extensively in recent years due to its intriguing advantages in environmental remediation. In this study, a two-phase swirl-flow monolithic-type reactor is used to study the kinetics of photocatalytic degradation of benzoic acid in immobilized systems. Transport contributions into the observed degradation rates were determined when catalyst is immobilized. Intrinsic kinetic rate constants and its dependence on light intensity and catalyst layer thickness, values of adsorption equilibrium constant, internal as well as external mass transfer parameters were determined. The simultaneous effect of catalyst loading and light intensity and optimum catalyst layer thickness were also determined experimentally. Reaction rate constants and overall observed degradation rates were compared with slurry systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic study of the photocatalytic degradation of the acid blue 113 dye in aqueous solutions using zinc oxide nanoparticles immobilized on synthetic activated carbon

Approximately 10-20% of the total dyes in the world is consumed in the textile industry. The present study aimed to investigate the photocatalytic activity of zinc oxide nanoparticles (ZnO) immobilized on synthetic activated carbon in the removal of the acid blue 113 dye from aqueous solutions. This experimental study was conducted in a photo-reactor with the useful volume of one liter. The eff...

متن کامل

Photocatalytic degradation of ciprofloxacin in the presence of synthesized ZnO nanocatalyst: The effect of operational parameters

This study was aimed at investigating the photocatalytic degradation of ciprofloxacin (CIP) antibiotic in aqueous solution using immobilized ZnO nanoparticles on glass plate. X-ray diffraction, atomic force microscopy, and scanning electron microscopy were applied to characterize the nanoparticles. To do so, the ZnO nanoparticles were synthesized through the chemical precipitation method and we...

متن کامل

Photocatalytic degradation of ciprofloxacin in the presence of synthesized ZnO nanocatalyst: The effect of operational parameters

This study was aimed at investigating the photocatalytic degradation of ciprofloxacin (CIP) antibiotic in aqueous solution using immobilized ZnO nanoparticles on glass plate. X-ray diffraction, atomic force microscopy, and scanning electron microscopy were applied to characterize the nanoparticles. To do so, the ZnO nanoparticles were synthesized through the chemical precipitation method and we...

متن کامل

Kinetic Studies of the Catalytic Oxidation of Toluene to Benzoic Acid in the Liquid Phase

The catalytic oxidation of toluene to benzoic acid in the liquid phase has been studied in an un-stirred tank reactor. Low concentration of acetic acid was added in order to increase the solubility of the catalyst in toluene. The dependence of the rate of reaction on the concentration of toluene catalyst and oxygen pressure was studied. It has been suggested that liquid phase oxidation of t...

متن کامل

Photocatalytic degradation of methylene blue dye over immobilized ZnO nanoparticles: Optimization of calcination conditions

In the present study, calcination conditions during the synthesis of zinc oxide nanoparticles were optimized using response surface methodology (RSM) based on central composite design (CCD). After that, the effect of the type of UV irradiation on the photocatalysis of methylene blue (MB) dye was studied based on the kinetic model obtained at optimum conditions. Analysis of variance (ANOVA) exhi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 60 10  شماره 

صفحات  -

تاریخ انتشار 2005